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The present study further explores the fundamental singular solutions for Stokes 
flow that can be useful for constructing solutions over a wide range of free-stream 
profiles and body shapes. The primary singularity is the Stokeslet, which is 
associated with a singular point force embedded in a Stokes flow. From its deriva- 
tives other fundamental singularities can be obtained, including rotlets, stresslets, 
potential doublets and higher-order poles derived from them. For treating 
interior Stokes-flow problems new fundamental solutions are introduced; they 
include the Stokeson and its derivatives, called the roton and stresson. 

These fundamental singularities are employed here to construct exact solutions 
to a number of exterior and interior Stokes-flow problems for several specific 
body shapes translating and rotating in a viscous fluid which may itself be 
providing a primary flow. The different primary flows considered here include 
the uniform stream, shear flows, parabolic profiles and extensional flows (hyper- 
bolic profiles), while the body shapes cover prolate spheroids, spheres and circular 
cylinders. The salient features of these exact solutions (all obtained in closed form) 
regarding the types of singularities required for the construction of a solution in 
each specific case, their distribution densities and the range of validity of the 
solution, which may depend on the characteristic Reynolds numbers and 
governing geometrical parameters, are discussed. 

1. Introduction 
The hydromechanics of low-Reynolds-number flows play an important role 

in the study of rheology, lubrication theory, micro-organism locomotion and 
many areas of biophysical and geophysical interest. I n  the case when the inertial 
effects are negligible compared with the viscous forces, the Navier-Stokes 
equations are usually simplified to the Stokes equations as a first approximation. 
Determination of the solutions for the Stokes flows, however, is still recognized 
to be difficult in general for arbitrary body shapes. As a consequence, not many 
exact solutions are known. 

Of the few analytical methods available for solving Stokes-flow problems, one 
is the boundary-value method, which is based on the choice of an appropriate 
co-ordinate system to facilitate separation of the variables for the body geometry 
in question. Another is the singularity method, whose accuracy depends largely 
on whether the correct types of singularity are used and how their spatial distribu- 
tions are chosen. The boundary-value method seems to have been widely adopted 
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in practice, more so than the singularity method. In  the literature, the most 
important exact solutions of Stokes-flow problems are those found by using the 
classical treatment of the motion of ellipsoids by Oberbeck (1876), Edwardes 
(1892) and Jeffery (1922) (see also Lamb 1932, p. 604); all these studies are based 
on the use of ellipsoidal co-ordinates and on some rather sophisticated analysis 
of ellipsoidal harmonics. In contrast, these solutions have not been derived before 
by means of the singularity method. 

Actually the singularity method has been known since the pioneering work of 
Lorentz (1897), Oseen (1927) and Burgers (1938). It has been further developed 
and applied in the recent studies of slender-body theory for low-Reynolds- 
number flows by Hancock (1953), Broersma (1960), Tuck (1964, 1970), Taylor 
(1969), Batchelor (1970a, b ) ,  Tillett (1970), Cox (1970, 1971), Blake & Chwang 
(1974) and others. Through these investigations the relative simplicity and 
effectiveness of the method have gradually become more recognized. Neverthe- 
less, it  is felt that the potential power of the singularity method has not been 
fully explored for the general case of arbitrary body shapes as well as for the 
special case of slender bodies. The primary difficulty is the lack of general 
knowledge about the types of singularity required and their distribution densities, 
which are dictated by the specific body shape and different free-stream velocity 
profiles. It is thought that further development of the method can be greatly 
enhanced by accumulating a number of exact solutions for several representative 
cases, since useful information could be extracted from these solutions to guide 
more general theories. 

Following this objective, the first part (Chwang & Wu 1974a) of this series has 
been devoted to a study of the purely rotational flow generated by the rotation 
of axisymmetric prolate bodies of various shapes about their longitudinal axes. 
In  the present part we shall investigate the translational and rotational motion 
of prolate spheroids, spheres and circular cylinders in Stokes flow for several 
different free-stream velocity profiles. In  $ 2  we begin with a discussion of the 
fundamental singular solutions of Stokes flow, including a Stokeslet and its 
derivatives known as rotlets, stresslets, potential doublets and higher-order 
poles derived from them. Also introduced here are new fundamental solutions 
called Stokesons, rotons and stressons; they are useful for constructing solutions 
of interior flow problems as well as for representing a local free stream having 
a shear or an ‘extensional flow’ field. These fundamental solutions are then 
employed to construct the exact solutions to a number of problems described by 
the titles of $93-14. From these examples we note that the singularity method 
may have further advantages once the basic properties of different singularities 
are clarified. The method can be effectively executed with a set of Cartesian 
co-ordinates in general. Derivation of the net force and torque on the body is 
especially simple, as they can be determined by a direct integration of the 
distributed Stokeslets and rotlets, not requiring an integration of the surface 
stresses as in the boundary-value method. The important features of these exact 
solutions are discussed, especially with respect to the types of singularity 
required for the construction of a solution in different situations, and to the 
distribution density of these singularities. 
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Further attempts are made here to use these exact solutions, all being 
expressed in closed form, to provide an estimate of their range of validity, which 
may be affected by the characteristic Reynolds numbers and the body geometry. 
The latter effect, as has been noted, has not been thoroughly explored for low- 
Reynolds-number flows in general. Possible improvements to the solution beyond 
the range of validity of the Stokes approximation will be discussed in a future 
paper. 

2. Fundamental solutions of the Stokes equations 

equations 
The starting point of the singularity method is the inhomogeneous Stokes 

v .u = 0,  v p  = pV2u+f, (1  a, b )  

where u is the velocity vector, p the pressure, p the constant viscosity coefficient, 
and f ( x )  the external force per unit volume, x being the position vector in a three- 
dimensional Euclidean space. The class of incompressible viscous flows considered 
here is assumed to have negligible inertial effects when the Reynolds number is 
sufficiently low. (Consistent with this assumption, the external force f may also 
depend on the time t ,  as a parameter, provided that it varies sufficiently slowly 
with t . )  The solutions of (1) corresponding to forces having a certain singular 
behaviour in an unbounded flow will be called the fundamental solutions, and 
such forces, the fundamental singularities. We discuss below the important cases 
with the purpose of compiling a set of necessary 'building blocks ' for the eventual 
construction of solutions of various general boundary-value problems. 

The primary fundamental solution is associated with a singular point force 
located, say, a t  the origin, 

f ,  = Sn-paS(x), ( 2 )  

a being a constant vect.or and Sfx) the three-dimensional Dirac delta-function. 
It is called a Stokeslet, after Hancock (1953), and a characterizes its strength (in 
magnitude and direction). The solution of (1) with f = f ,  can be derived in a quite 
straightforward manner. (As a direct approach, p can be readily found from the 
equation obtained by taking the divergence of (1 b ) ,  the vorticity vector from 
the curl of (1 b) ,  and the velocity can be determined upon integration of either 
the vorticity or (1 b )  under condition (1 a).) Thus the velocity Us, pressure Ps 
and vorticity rs = V x Us of a Stokeslet of strength a are 

U S ( x ;  a )  = a / R + ( a . x ) x / R 3  ( R  = / X I ) ,  (3  a) 

P,(x; a)  = - 2pV. (a /R)  = 2pa. x/R", (3  b )  

rs(x; a )  = 2V x (a /R)  = 2a x x/R3. (3 c) 

Here the pressure is measured, for simplicity, relative to the pressure p a  at 
infinity. It is noted that the velocity field of a Stokeslet has a long-range effect, 
falling off like R-1 a t  large distances, while the pressure P, and vorticity rs both 
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decrease like R-2. The total force exerted by a Stokeslet on the fluid outside 
a control surface S, enclosing the Stokeslet is given hy 

n n 

where n is the unit outward normal at S, and T is the viscous stress tensor. The 
second step indicates an application of the divergence theorem to the volume V ,  
within S,, and the last two steps follow from (1  b )  and (2). 

Obviously, a derivative of any order of Us and Ps is also a solution of ( I ) ,  the 
corresponding f being the derivative of the same order of fs. These derivatives 
are readily obtained from the ‘formal’ multipole expansion of a Stokeslet a t  
x = 6 in a Taylor series about x: 

Us@-6) = Us@)- (S.V) V , (x )+~(~-V)2Us(x )+ . . .  , ( 5 )  

together with similar expansions for Ps and &. With an appropriate interpreta- 
tion of the multipole moments, as is generally practised in potential theory, we 
may introduce the Stokes doublet, Stokes quadrupole, etc., as 

Us&; a, P) = - (P. V) Us@; a) 

(Gal 
- - ( P x a ) x x  

R3 

Us4k a, P, Y) = (Y .  V) (P. V) Us@; 4, 

Ps4(x; a> P, Y) = ( Y .  V) (P. 0) P,(x; a),  

( 6 c )  

( 6 4  

where a, P and y are constant vectors constituting the pole moments. The 
velocities of these Stokes multipoles, while vector functions of x, may be regarded 
as tensorial quantities in terms of the (Cartesian) components ai, pi and yk of 
a, P and y. Although each of these tensorial components of (U, P) is itself a solu- 
tion of the Stokes equations, it is often useful, for the interpretation of their 
physical significance, to group them in certain combinations. 

For instance, the antisymmetric component (with respect to an interchange 
of a and P) of a Stokes doublet [see ( 6  a)]  is itself a physical entity; it is a rotlet 
(also called a couplet by Batchelor 1 9 7 0 ~ )  and its velocity, pressure and vorticity 
are given by 

U,(x; Y)  = wJs,(x; P, a)  - Us&; a, P)1 = $0 x Us@; y) 

P,(x; Y) = H%,(x; P, a) - GYAx; a, P)1 = 0, 

<I~(x ;  y ) =  V x U, = V x (V x (y/R)) = V(V. (y/R)) +4ny6(~) .  

fI, = 47rp[(a.V)p-(P.V)a]6(x) = 477pVx (y6(x)). 

= y x X/R3 (Y = ax PI, (7 a )  

(7 b )  

(7 c) 

The singular forcing function of a rotlet is clearly 

(8) 
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The above solution (7) can also be derived directly from (1) with f = fR (see 
part 1) .  Physically, a rotlet flow may be regarded as that due to a singular point 
torque a t  the origin, since the moment exerted on the fluid by a rotlet of strength 
y is 

n 

for any closed control surface S, containing the rotlet. On the other hand, the 
net force on the fluid due to a rotlet is zero. 

The symmetric component of a Stokes doublet gives a fundamental singularity 
called a stresslet, after Batchelor (1970a).  Its  velocity, pressure and vorticity 
[see (6  a, b)]  are 

Css(x; a,p) = (3/R5)[(P.x)a+(a.x)P1 xx. (10 c )  

The stresslet velocity Us, can also be expressed in a tensorial form with its 
strength characterized by a symmetric second-rank tensor (Batchelor 1970a). 
Physically, a stresslet represents straining motion of the fluid symmetric about 
the a, p plane with the principal axes of strain lying in the a + p, a - p and a x p 
directions. In  virtue of this symmetry, a stresslet contributes 
moment to the fluid. 

A potential doublet is well known to possess the velocity field 

s 3 ( S . X ) X  
U,(x;S)=V v.- =--+ ( E) R3 I25 

no net force or 

(11)  

S being the doublet strength. It is of interest, however, to note that a potential 
doublet is related to a Stokeslet by 

uD(x; S) = - &VWs(x; S) (0 < 1x1 < 00). (12a) 

In  accordance with this relationship, the corresponding pressure, now under the 
assumption of negligible inertial effects, is therefore 

P,(x; S) = - &V2Ps(x; S) = 0 (0 < 1x1 < a), ( 1 2 b )  

since PS(x) is a harmonic function of x. Thus we see that, while the potential 
doublet retains its kinematic identity with a doublet in potential flow, its 
dynamic effect now diminishes as the inertial effects become negligible. Further, 
since the potential doublet is a derivative of a Stokeslet, hence so are all the 
higher-order poles of potential flow derived from them. Regarding its utility for 
constructing solutions, the potential doublet plays a fundamental role in potential 
theory as well as in low-Reynolds-number flow problems. Various potential 
problems can be solved by employing an appropriate spatial distribution of 
doublets only (see, for example, Chwang & Wu 1974b). These potential-flow 
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solutions have provided valuable suggestions about the basic structure of the 
singularity solutions of analogous Stokes-flow problems to be presented later. 

For interior Stokes-flow problems it is useful to seek solutions of ( I )  that are 
singular a t  infinity but regular everywhere else. Such a fundamental solution 
which has a quadrupole a t  infinity will be called a ‘Stokeson’ and, more 
specifically, is given by 

US,(x; a )  = 2R2a-(a .x)x ,  ( 1 3 a )  

PSN(x; a )  = lOp(a.x), (13 b)  

CSN(x; a )  = V x USA, = - 5a x x .  (13 c )  

A ‘Stokeson dipole ’ is a derivative of a Stokeson; it has a velocity linear in x 

UNB(x; a, P) = - (P. V) USiV(x; a )  = (a .  P ) x +  ( a . x ) P -  4 (p .x )a ,  ( 1 4 4  

and a uniform vorticity and is given by 

PND ( x ;  a ,  P) = - lop(a.  PI, 
GND(x;a, P) = 5a x P. 

( 1 4 b )  

(14c) 

A particular solution of this class useful for representing rotationaI flows at low 
Reynolds numbers is the antisymmetric component of U,,, which we shall 
call a ‘roton’: 

u,, = y x x ,  PR* = 0,  CRN = 2y. (15) 

Thus a roton represents a rigid-body rotation, in which the pressure due to the 
centrifugal inertia effect is neglected in accordance with the basic assumption. 
Another particular solution which is useful for describing local straining motion 
is the symmetric part of a Stokeson dipole, which we shall call a ‘stresson’. It has 
the velocity 

(16) 

which is irrotational, and carries no pressure variation. A stresson is seen to 
consist of a shear-strain component (in Cartesian form) 

Uss, = ( a .  P) x --$[(a.  x )  P + (P. x )  a ] ,  

u = A i , y + A 1 3 ~ ,  v = A1,x+A,3z, w = A,,x+A23y, ( 1 7 a )  

and a principal straining motion 

u = a x ,  v = by, w = cz ( a + b + c  = 0) .  (17b)  

The latter is known as an ‘extensional $ow’ in rheology. It becomes an exact 
solution of the Navier-Stokes equations if it is associated with the pressure 
p = - ip(a2x2 + b2y2 + c2z2) and constant density p. When the pressure variation 
is neglected, the extensional flow can serve as a useful approximation of the local 
free stream in certain low-Reynolds-number flows. 

The corresponding fundamental solutions of the two-dimensional (plane-flow) 
problems can be derived in a similar way. For a two-dimensional Stokeslet 
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a being a two-dimensional vector in the y ,  z plane, we have 

Us(x;a )  = alogr- l+(a.x)x/r2 ( X  = ( y , z ) ,  r2  = y2+.z2),  ( 1 9 a )  
P,(x; a )  = 2p(a. x )  Y-~, ( 1 9 b )  
&(x; a )  = 2(a x X )  r r2 .  ( 1 9 c )  

The total force exerted on the fluid per unit breadth (in the x direction) by a 
two-dimensional Stokeslet is 

F = 1 f,dv = 47rpa, (20) 
vc 

where Ji is a control volume containing the Stokeslet. 
Similarly, the other fundamental solutions for external flows can be readily 

converted from the three-dimensional to the two-dimensional form by simply 
replacing R-l by log ( l / r ) ,  R-" (n 2 2 )  by r n + l ,  and 477 in the coefficients by 27r. 
The two-dimensional Stokeson has the same dependence on x and r as a three- 
dimensional one has on x and R as shown in ( 1  3 ) ,  except that t,he factor 2 in ( 1  3 a)  
must be replaced by 3 and the fact.or 10 in ( 1 3 b )  and the factor 5 in (13c) both 
by 4. The two-dimensional versions of (15) and ( 1  6 )  are exactly the same expres- 
sions but with a,  p and y designating two-dimensional vectors, 

We now proceed to demonstrate the singularity method by presenting exact 
solutions to a number of Stokes-flow problems. Some of these have been 
previously obta,ined by different methods, the others are believed to be new. 

3. Uniform flow past a prolate spheroid 

spheroid 

where the focal length 2c and eccentricity e are, as usual, related by 

With no loss of generality, the free-stream velocity may be taken as 

ex, e, and e, being the base vectors. This problem is chosen as a primary example 
since the body geometry is among the simplest exhibiting the effects of arbitrary 
body slenderness in low-Reynolds-number flow theory, and since its exact 
solution by the singularity method is relatively simple. 

Partly guided by the known solution for potential flow past a prolate spheroid 
based on the singularity method (Chwang & Wu 1974b),  we try to construct the 
requisite solution by employing a line distribution of Stokeslets and potential 
doublets between the foci x = - c and c given by 

We first consider the Stokes flow for a uniform free stream past a prolate 

s2 /a2+r2 /b2  = 1 ( r2 = y 2 + 9 ,  a 2 b) ,  (21 a )  

c = (a2-b2)4  = ea (0 6 e < 1 ) .  (21 b )  

U = Ulex+U2e,, (21 c )  

u = ~ , e , + ~ : e , - [  - C  [ a 1 ~ , ( x - 5 ; e , ) + a 2 ~ , ( x - 5 ;  e,)ldt +r (c2-62)rP1uD(x-5; e,)+P2UD(X-g; e,)ldt, ( 2 2 a )  
- C  

(22 b )  
- C  
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where, here and below, 5 = ce,. The first integral in (22 a) represents a line distri- 
bution of Stokeslets, of constant strength a, and a,, oriented in the negative-x 
and negative-y directions, respectively. The second integral denotes a line distri- 
bution of doub1ets;each of parabolic density and pointing in the x and y directions 
respectively, t,heir parabolic density being suggested by the corresponding 
potential-flow solution. Obviously, (22 a) and (22 b)  satisfy the (homogeneous) 
Stokes equations (1 a)  and (1  b )  in the flow field, and also satisfy the boundary 
conditions on u and p at infinity. To verify the no-slip condition on the spheroid 
surface, we make use of the integrated form of u, which can be written as 

u = U, e, + U, e, - ( 2a, ex + a, e,) B,, , - (alreT + a, ye,) 

x-c x+c  + &re,- ol,ye,) rB3, , + V { - 2PlBl, , +P,Y [T Rl -- r2 R2+ B,,,]], (23) 

(24 a) 

where e, = (ye, + ze,)/r is the unit radial vector in the y, z plane and 

R, = [(x + c ) ,  + r2].E, R, = [(x - c)2+ r2],f, 

cnd5 
(n = 0,1,2, ... ; m = -1, 1,3,5,  ...), (24b) B m , n ( x )  1 -c  - Ix-51” 

R, - (X - C) 
B1,O = logR,-(x+c)’ 4 , 1 =  ~,-R,+xB,,,,  (24 c) 

As the function B m , n ( ~ )  appears frequently in the analysis, we give here its 
recurrence formula for future convenience : 

cn--l 1 n-1  
m--2 RF-, q-2 m-2 Bm,n = -- (- +- (-‘)%) +- Bm-2,n-2+xBm,n--l (n 2 2). (24e) 

Now, on the spheroid surface (21), designated by S, 

r2 = (1--,)(a2-x2), R, = a+ex, R, = a-ex, (25 a )  

2e 
( 1  - e2) (a2 - e2x2)’ (25 b)  

1 + e  
1-e  

B1,, = log - E L,, B3, = 

Hence the surface velocity becomes, after some simple manipulation, 

* (26) 

The no-slip condition on S is clearly satisfied if 

a1 = 2P,e2/( 1 - e2) = U,e2[ - 2e + ( I  + e2) L,]-1, 

a, = 2P2e2/(1 - e2) = 2U,e2[2e + (3e2- I) L,]-1. 
(27 a) 

(27 b)  
This completes the required solution. 
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The force experienced by the spheroid, by superposition of (4), is 

F = - 8np ( - a, ex - a2 e,) dx = 67r,ua[ U, CB7, e, + U2CBT2 e,], L 
with the force coefficients given by 

l f e  -I 
1 - e  1 ’ - 2e + (1 +e2) log- 

2e+(3e2-1)log- 
1 - e  

This result for the force is in agreement with that given by Oberbeck (1876) and 
Jeffery (1922). The present solution also facilitates the determination of other 
physical quantities, such as the pressure forces. 

The pressure, upon carrying out the integration in (22 b ) ,  is given by 

which assumes on the spheroid surface X the value 

p ( x ,  r(x)) = - 4pe a,x+a - y (a2-e2x2). (29b) ( 2b2 a2 il 
Noting that the unit outward normal n on S is 

n = 

we find the pressure contribution to the total force to be 

where 
1-e2 c,, = - [ - 2e + log Eel cFl, 
2e3 1-e 

2e-(1-e2)log- 
1 -e  

This result gives the relative magnitudes Cp,/CF, and Cp2/CF2 for prolate 
spheroids of arbitrary eccentricity e .  The remaining contribution to the force is 
due to  the viscous skin friction. 

I n  the limiting case of a sphere (as a+b, or e - t  0), (26) reduces to 

and by (28) and (31), 

all being well-known results. 
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FIUURE 1. The longitudinal and transverse force coefficients C,, and CF2 [CFi = F,/GnpUia, 
i = 1, 2, see (as)] of a prolate spheroid of axis ratio b/a immersed in a Stokes flow with 
a uniform free stream. C,, and C,, are the pressure contributions to the respective force 
coefficients. 

I n  the other extreme of very slender spheroids, or for a slenderness parameter 

E = b/u = (1 - e2)f < 1, (33)  

the force coefficients have the following asymptotic behaviour : 

1 
[I+ O ( m ,  ( 3 4 a )  

2 1 4 
3 log (2a/b) - + c,, N - [l + O ( E 2 ) ] ,  c,, ‘v - 

3 log (2u/b) + + 
which agrees with Tillett’s (1970) result based on slender-body theory. Further, 
from the expansion 

c,,/c,, N ${l + [log (2/s)]-1+ O(loge)-2) ( 3 4 b )  

we note that the ratio C,,/C,, tends to as E + 0, but that this asymptotic limit 
is approached logarithmically since d(CR1/C,,)/ds N +[E  log2 (2/~)]-,, which is 
unbounded as E -+ 0. The corresponding C,, and C,, are 

c,, N Eylog ( 2 / € )  - I] CF1, c,, 21 $[ 1 - €2 log ( 2 / € ) ]  c,,, (34 4 
indicating that C,, becomes insignificant for the longitudinal translation of an 
elongated spheroid, whereas C,, is nearly &’,, and is rather insensitive to varia- 
tions in a when E is small. These salient features of the force coefficients are clearly 
exhibited in figure I ,  which is a plot of C,,, C,,, C,, and C,, over the range 
O < b / a f l .  

Other important quantities are the local cross-sectional force coefficients since 
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they form the basis of slender-body theory. The local force acting on a unit 
cross-section of a spheroid at a station x can be determined from 

where V is the contour around r = r ( x )  and 0 is the cylindrical polar angle. We 
remark that dX = ~ ( x )  d0 dx/(n . e,) is a surface element of the spheroid, so that 
the differential force Fl(x)  and the total force F [see (28  a)]  are related by 

F = I a  F,(x) dx.  (35  b )  
-a 

The above definition of C,(x) and Cn(x) is conventional in the literature of slender- 
body theory (see Gray & Hancock 1955).  By making use of the present exact 
solution ( 2 6 )  and ( 2 9 ) ,  the line integral in ( 3 5 a )  can be evaluated, which is not 
tedious, and we find that 

4npe 
a2 - e2x2 

{2e,( 1 - e2)a lx2  + eya2(a2 - x2),>, 

from which it follows that 

C,(x) = 8n-,uea,/U,, Cn(x) = 8npea2/U2 ( - a  6 x < a) ,  ( 3 6 a )  

where a, and a2 are given by ( 2 7 ) .  This result, which would hardly be expected 
intuitively, shows that the cross-sectional force coefficients C, and C, are both 
constant, independent of x ,  for a prolate spheroid of arbitrary eccentricity, 
including the sphere! Further, by (28) and ( 3 6 a ) ,  

c, = 3npcF,,  cn = 3npcF2;  ( 3 6 b )  

the values of CJC, for different eccentricities e can therefore be read from the 
curve of C,,/C,, in figure 1. For very slender spheroids, it  follows from ( 3 4 )  and 
( 3 6 b )  that 

c, = 2 v  c, = 4np ( b l u e  I ) .  
log (2a/b)  - 8’ log (2a/b)  + 3 ( 3 7 )  

This result should be compared with slender-body theory, which provides, for 
an elongated rod of radius b and length 2a, the formula 

y being a constant. According to Gray & Hancock (1955) ,  y = 2, whereas Cox 
(1970)  has recommended that y be the ratio C,/C, determined by using (37 ) ,  
which is a function of alb, and is always less than 2 .  

Regarding the structure of the present solution we further note that only 
Stokeslets and doublets are required for a prolate spheroid in translation and 
their line distributions all terminate a t  the two foci. The distance between one 
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U 

FIGURE 2. The orientations of the distributed Stolreslets and doublets for 
uniform flow past a prolate spheroid. 

focus and the nearer end of the body is related to the radius of curvature 2, at 
the nose by 

For elongat,ed spheroids, this becomes a - c = &a, as e + 1. This asymptotic end 
property has been generally recognized for potential flows (Landweber 1951) and 
has also been conjectured for the low-Reynolds-number case (Tuck 1970; Tillett 
1970). 

Another point of interest is that, since al/a2 = PI/& by (27 a, b) ,  the resultant 
Stokeslet and the resultant doublet subtend the same angle 

2, = ( i + e ) ( a - c ) .  (39) 

6 = tan-' (a2/al) = tan+ (p2/p1) 
a t  the x axis. This angle is related, in virtue of (28 b, c), to the incidence angle 
a = tan-l (U2/Ul) by (see figure 2) 

tan 6 = a2/al = (CF2/CF1) tan a. 

tan S 2: 2 tan a + O(1og s)-l. 

(40a) 

(40 b )  

For elongated spheroids this relationship becomes, according to (34 b ) ,  

In  the same limit, however, the doublets p1 and p2 become increasingly weaker 
than the Stokeslets, since by (27 a, b) ,  

PI N =&'CZ~, p2 21 & ~ ~ a ~  ( E  = b/a 4 1).  (41) 

The approximation of the solution by leaving doublets out when evaluating Stokes 
flows involving slender bodies has been practised before in the literature. While this 
is valid for elongated spheroids, to attach a general validity to this approximation, 
for arbitrary slender bodies, may be premature. A counter-example is the two- 
dimensional circular cylinder (its effective slenderness parameter being E = 0), 
for which a doublet is still required for constructing the near-field solution. 
Another example appears in Q 14. 
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Finally, it is of importance to estimate the range of validity of the present 
solution by assessing the magnitude of the neglected inertial forces relative to 
the terms retained. It is convenient to separate the longitudinal and transverse 
motions and to evaluate the flow quantities on a spheroidal control surface, which 
is taken to be confocal with the body surface, namely on r = r*(x), where 

r t  = ( 1 - e ~ ) ( a $ - x 2 )  (e*a, = ea, e ,  < e ) .  (42) 

For the longitudinal motion (with U2 = O ) ,  a typical leading term of the inertial 
force is uaulax, while for the transverse motion such a term is vaulay, where 
u = (u, v, w). The estimate of the viscous force may be taken as I,uV2uI or lVpl 
since they are equal according to the Stokes approximation. We find the ratio 
of the local inertial effects to the local viscous effects (evaluated a t  r = r * )  to be 

(longitudinal motion), 

IpVaulayI -" o - (transverse motion), 
IVPI (Y) (43 b)  

where v = pip. Since '1c and v tend to zero as the body surface is approached and 
u --f U, and v + U, at infinity, the above ratios will remain small in a neighbour- 
hood of the body if 

Rb < R, < 1 (R, = Ua/v, = Ub/v, u = Iu(), (44a) 

no matter how small the parameter E = b/a = Rb/Ra is. Under this condition, the 
justification for the present results (for the force a t  least) as a valid first approxi- 
mation for a small longiiiudinal Reynolds number R, is entirely parallel to the 
classical argument for the sphere. However, the situation becomes very different 
when 

R, < 1, R, not necessarily small. (446) 

Ur& = (.,/a) R,. (44c) 

In  this case the 'local' Reynolds number in (43) may be recast as 

If this ratio is required to be small in order to justify the Stokes approximation, 
.*/a may be very much restricted by this requirement, especially when R, 1. 
In fact, the upper bound on .*la could be so small that the local velocity u* 
would still deviate appreciably from the free-stream value U. Under such circum- 
stances the present solution would no doubt break down. This class of problems 
will be discussed in a future paper. 

4. Longitudinal shear flow past a prolate spheroid 
We next consider the shear flow U = Q3 ye, past a prolate spheroid specified 

by (21). The fact that the y derivative of U is a constant vector suggests, in view 
of the previous example, that the required singularities include a line distribution 
of Stokes doublets associated with the base vectors e, and ev, which can be 
assembled more conveniently in terms of a stresslet, a rotlet (whose direction is 
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opposite to the vorticity of the primary flow), and a potential quadrupole (which 
is generally associated with a stresslet much like a doublet is associated with 
a Stokeslet). On this basis we find the solution to be of the form 

where a3, p3 and y3 are constants and the fundamental solutions U,, U,, etc. are 
given in $ 2 .  These integrals can all be expressed in terms of the function B,, n ( ~ )  

defined by (24); the final result reads 

From this result we find, after some calculation, that the no-slip condition 
(u = 0 on S )  is satisfied if 

a3 ==,Pa 4e2 = 2e27’3[-2e+log%e] [2e(2e2-3)+3(1-e2)log- 1 -e  I-e 

-2e+(l+ez)log- (47 b )  

The net moment on the spheroid is contribut,ed by the rotlet only; it can be 
determined by superposition of (9)) giving 

or in coefficient form, 

The resultant moment acts on the spheroid in the direction of the vorticity 
vector of the primary flow. There is no net force on a spheroid immersed in this 
shear flow since the solution contains no Stokeslet; this is because the shear flow 
is centred about the longitudinal axis of the spheroid. 

In  the limiting case of a sphere (a+ b ,  or e - t  0 ) ,  we deduce from the above 
result that, as e - t  0, 

a 3 r  (c2- ~ 2 )  tit = - + ~ a 3 ,  y 3 r  (c2- 6 2 )  tit = 4 ~ a 3 ,  
-C - C  

(c2- c 2 ) 2 d E  = - +fia5, 
--c 
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where the subscripts on Q have been omitted. Consequently, the corresponding 
limiting values of u and M are 

3xyx a3 e , x x  a5 
R5 2 R3 6 

[ 5 3 -  +---- u = Q yex-sa (49) 

M = -4npQa3e,. (50) 

This result agrees with the known solution of Burgers (1938)  for a sphere in 
a shear flow. The present solution for the spheroid also agrees with that in 
Jeffery's (1 922) general treatment of ellipsoids based on an analysis involving 
ellipsoidal harmonics. This problem has been further discussed recently by Cox 
(1971) using the singularity method, but only approximately for the case of a 
small shear rate in the free stream. 

5. Cross-flow with a longitudinal rate of shear past a prolate spheroid 
In  the case of a free stream U = Qixe, flowing past the same spheroid as 

before, the structure of the solution is entirely analogous to the preceding case, 
namely 

- C  

In  fact, since aU,(x; e,)/ax = aU,(x; ex)/ay, the perturbation flow field has 
exactly the same functional expression as in (45). The three new coefficients 
a;, and y; can be determined upon invoking the no-slip condition u = 0 on 
the body surface S specified by (21), which gives 

ev; [ - 2e + (1 - e2) log- 
1 - e  ""I [ a' - -$' 4e2 = 

3 - 1 - e ~  3 

y3 being given by ( 4 7 ) .  The corresponding moment on the spheroid is 

M,, = - 87rpr [ - y;(c2 - t2) e,] d&. = 3877pc3y; e,, (53 a)  
- C  

or 

on account of (52b)  and (48 b ) .  We may note that, as a rule, the moment exerted 
by a shear flow on an axisymmetric body acts in the direction of the vorticity 
vector of the primary flow. Through this rule, the present result covers all the 
cross-flows having a longitudinal rate of shear. 

51 FLX 67 
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If the uniform shear flows of this section and $ 4  are superimposed, the resultant 
moment (by superposition of (48) and (53)) will vanish when y, = y;, or after 
making use of (52  b) ,  when 

Q3/Q; = a2/b2. (54) 

Therefore, a spheroid experiences no moment when the vorticity vectors of the 
longitudinal and transverse flows are in opposite directions and have the ratio of 
their magnitudes equal to the square of the axis ratio re = a/b. 

6. Cross-flow with a transverse rate of shear past a prolate spheroid 
In  this case a prolate spheroid is held fixed in a flow which is in the y direction 

and sheared in thez direction with, for example, the free stream U = Qlze,. Again, 
on the basis of the symmetry properties relating the singularities to the primary 
flow as explained in the previous two cases, the solution can be expressed in 
the form 

--c 

These integrals can all be expressed in terms of the function B,,,(x) defined by 
(24e), whose value at  the spheroid surface can be evaluated straightforwardly 
with the aid of (25 ) .  Curtailing the details, we find that the no-slip condition at  
the body surface is satisfied by (55 a )  if 

/? = 21R,e2(1-e2) 2e(3-5e2)-3(1-e2)210g- 
4e2 

a4 = - 
1-e2 

y4 = *al( 1 - e2) 2e - (1 - e2) log- 1 - e  

The resultant moment is obtained by integrating the rotlet distribution, giving 

y4(c2 - t2 )  e,dg = -3$n-pc3y4eX (57 a )  

If the spheroid is released in this particular shear flow, the applied moment 
will clearly make the spheroid rotate about its longitudinal axis until it  reaches 
a steady angular velocity, say - Qo ex. But if this steady rotation took place in 
a viscous fluid otherwise at  rest, it  would exert a moment on the fluid given by 
(see equations (43) and (44) of part 1) 

l + e  -1 
1 - e  1 M, = 3+7pc3Q0( 1 - e2) 2e - ( I  - e2) log- [ 
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FIGURE 3. Various moment coefficients of a prolate spheroid of eccentricity e and axis ratio 
bla = ( I  - ez)*. CM12 = Ml,/8npR,aba is the moment coefficient due to a longitudinal shear 
flow with shear rate n3, C,,, that due to a cross-flow with longitudinal shear, C,,, that due 
to a cross-flow with transverse shear, C,, that due to rotation about a minor axis and 
C,, that due to rotation about. the major axis. 

or using the coefficient form and comparing it with (57), 

C,,, = M,/8npab2Q, = X'a,,,. ( 5 8 b )  

Since the action and reaction must balance for a free spheroid rotating in a steady 
state, we must have, in view of the linearity of Stokes flows, M,, +M, = 0, from 
which it follows that 

Q, = *Q,, (58c) 

which states that the steady angular velocity Q, of a freely rotating spheroid is 
half the basic flow vorticity, as might be expected. 

The four moment coefficients C,,, of (48), C,,, of (53), C,,,, of (57) and C,, 
of (58 b )  are shown in figure 3 over the range 0 < b/a 6 1. These results are valid 
if Qa2/v < 1 for the first two cases and if Qb2/v < 1 for the third, while the last 
has already been discussed in part 1. 

7. Rotation of a prolate spheroid about a minor axis 
The problem of the rotation of a prolate spheroid about a minor axis, with 

a,ngular velocity S2 = fiez say, can be readily resolved by appropriate super- 
position of the solutions of the preceding shear-flow problems. This possibility 
is realized upon observing that the flow velocity relative to the body has a t  large 

51-2 
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distances the form U = (Gy, - ax, 0) ,  each component being a shear flow already 
discussed. I n  drawing this analogy we note that the inertial effect arising from 
the transformation from an absolute frame to the body frame may be neglected, 
together with other inertia forces, in accordance with the basic assumption for 
low-Reynolds-number flow, which here requires that Qa2/v < 1.  Therefore, the 
solution, expressed in the body frame, can be written as 

u = Qye,-Q2xe,+ul(x)+u,(x), (59 a )  

P = PlW +PB(X), (59 b )  

where (ul,pl) and ( u , , ~ , )  are given by (45) and (51), respectively, with C13 = Q 
and GA = - R. 

Consequently, the resultant moment on the rotating spheroid, by superposition 
of (48a)  and (53a) ,  is 

( 6 0 4  M R ---32, - 3 p c3 (y3-yA)ez =-3$npc3 (2-ez) E 2  7 3  e 2 9  

where y3 is given by (47 b )  (with Q3 = Q), or in coefficient form, 

which agrees with the result obtained by Gans (1928). The moment coefficient 
Q,, is also shown in figure 3 for comparison with the other cases. 

8. Extensional flow past a prolate spheroid 

(17b)l past the present spheroid is the one with an axisymmetric free stream 
The simplest case of an extensional flow [also called 'hyperbolic flow', see 

U = 2Qxe, - Gye, - Qze,. (61) 

It corresponds to a radial inflow and a longitudinal outflow. From the axial 
symmetry it is obvious that no rotlet is required for constructing the solution. 
In  fact, the form of the gradient of U suggests that we adopt stresslets and 
potential quadrupoles in a diagonal combination of the form 

u = u + u,(x) +up&), (62 a )  
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In  (62  a) ,  U assumes the expression (61), and in (62  6 ,  c ) ,  the last expressions are 
obtained by some rearrangement and using the equation V2(R-l) = 0. Carrying 
out the integrations, we obtain 

in which the notation follows (24). By using (25), we find that u assumes at  the 
spheroid surface the value 

u, = Zxe,[fi - 2a5(3e - L,) - 12/3,(2e - 3Le)]  - re, fi + 2a5 L, - 12/3, 

. ( 6 3 b )  

From this expression we find that u0 = 0 if the coefficients of all three terms in 
(63 b )  vanish simultaneously, this being the case if 

a5 = E2P5 4e2 = 
(64 )  

which completes our solution. Since the solution involves no Stokeslet and no 
rotlet, the spheroid experiences in this case neither a net force nor a net moment, 
as should be expected on the grounds of flow symmetry. This exact solution may 
be useful in the study of the dynamic stability of a spheroid immersed in an 
extensional flow. The general case of an extensional flow without axial symmetry 
can be treated in a similar manner, and incorporation of shear-flow components 
is possible. Construction of the solution in such a general case is however a little 
complicated. 

In  the limit b-ta (or e +  O), we have 

and we deduce that for a sphere of radius a centred in the extensional flow (61 )  

u/fi = zxe, - ye, - ze, + $ a 3 2  

The stream function $(x, r ) ,  defined by 

rzc = a@/&, ru,. = - a@/ax (u, = u. e,), (67 )  

of the extensional flow past a sphere is easily obtained by integration from (66a) :  

$ = Qx(y2+22) [ 1-- 2” Q3 - +- $J5j* 
The streamlines of the flow in the plane z = 0 are shown in figure 4 for several 
values of $/Qa3. 
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FIGURE 4. (a)  Streamlines of an extensional flow past a circular cylinder of radius b.  
(b )  Streamlines in a meridian plane of an axisymmetric extensional flow past a sphere of 
radius a. 

9. Flow with a paraboloidal profile past a sphere 
As a further variation of the free stream, we consider a flow with a paraboloidal 

velocity profile U = K(y2 + 9) e, past a sphere of radius a, centred a t  the origin. 
(An off-centred paraboloidal profile is equivalent to a centred one superimposed 
on a uniform flow plus a shear flow.) By the singularity method we find that the 
solution consists of, apart from the primary flow, a Stokeslet (required to produce 
a dra,g), a potential doublet (associated with the Stokeslet to account for the 
body-thickness effect), an axial Stokes quadrupole (as suggested by the variable 
velocity gradient) and a potential octupole (associated with the Stokes quadru- 
pole to balance the power-law variations of the solution in 22). Thus we obtain 
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FIGURE 5. Streamlines in a meridian plane of a paraboloidal flow U = Kfy2 + z2)e, 
past a sphere of radius a. 

which is found to vanish at R = a if 

C, = 4 K d ,  C, = &Ka5, C3 = &KO?, C4 = h K ~ 7 ,  (68b) 

as may be easily verified. The corresponding pressure is given by 

in which the first term on the right-hand side is the dominant pressure due to 
the primary flow. The resultant flow has a stream function [defined by (67)l 

in which the R and r on the right-hand side have been non-dimensionalized with 
respect to the sphere radius a. Several streamlines in the plane z = 0 are shown 
in figure 5. The present solution agrees with the result of Simha (1936). 

To compute the sphere drag in this case we first note that although the primary 
flow has a pressure gradient, hence producing a ‘buoyancy’ effect (in the 
negative-x direction) on the sphere, this buoyancy force must be balanced by 
the net chffect of the viscous stress of the primary flow, as must be the case for 
an arbitrary fluid bulk moving with the primary flow. The drag on the sphere 
therefore comes solely from the contribution of the Stokeslet : 

D = 87rpC,e, = 4n-pKa3e,. (69) 

This drag may be regarded as associated with that on the same sphere in a 
uniform flow of an equivalent velocity 

U, = $h’a2. (70) 
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It is of interest to note that this U, is precisely the surface average of the primary 
flow velocity U = Kr2 over a spherical surface R = a. This rule may perhaps have 
a general validity for arbitrary non-uniform flows. 

10. Centred shear flow past a circular cylinder 
We proceed to discuss some solutions that can exist in the case of  unbound^ 

two-dimensional Stokes flows. In  contrast with the well-known ‘Stokes paradox ’ 
for a cylinder placed in a uniform flow, we observe here that, if an unbounded 
primary flow, which is necessarily non-uniform, and the body geometry are 
fitted together in such a way as to produce no net force on the body, then a 
solution, in the strict sense of the Stokes approximation, may be possible. 

A simple example of such a situation is the shear flow U = Qze, past a circular 
cylinder (of radius b say) fixed a t  the origin with its axis perpendicular to the 
stream. In virtue of the flow antisymmetry, we realize that the solution can 
admit no Stokeslet since there cannot be a net force on the cylinder, but may 
require a rotlet (in response to the primary vorticity), a stresslet (for counter- 
balancing the transverse gradient of the shear flow velocity) and a potential 
quadrupole (which is generally associated with a stresslet). Thus, as a trial 
solution, we write 

e x x  2yzx 
u = Q z e , + a L - p 7 - y V -  r2 

where x = ye, + ze,, r = I X I  = ( y2 + z2)*, and a, p and y are the strengths of the 
rotlet, stresslet and potential quadrupole, in that order. In  fact, this expression 
for u is found to satisfy the no-slip condition at r = b if 

= +fib2, /3 = Qb2, y = iGb4.  (71 b )  

The corresponding stream function $(y, z ) ,  defined by v = a$/az and w = - a~/ay,  

r is given by 

Qb2 2 b 

As shown in figure 6, the flow has two ‘ backflow’ regions, which are symmetric 
about the z axis and bounded by streamlines that separate from the circular 
cylinder a t  

~ 

r = b and tan-l (zly) = f. 30’ 

(at which four points a2$/ay2 = a2$/8z2 = 0). This strong upstream and down- 
stream ‘blocking effect’ is characteristic Qf the two-dimensional flow; such a 
backflow feature is absent, for instance, in the shear flow past a sphere given 

The moment on the cylinder (per unit breadth in the x direction), by ( 9 )  and 
by ( 4 9 ) .  

M = - 47r,uaex = - 27r,uQb2ex. (72 a) 
(71), is 

If the circular cylinder so located in the shear flow is allowed to rotate freely, its 
steady angular velocity will be - Qoex, where 

Qo = g-2, ( 7 2 b )  



Hydromechanics of low-Reynolds-number $ow. Part 2 809 

+Rh2= 4 

3 

3 - - I 
0 5  -- 

0 

2. 

> 

4 

FIGURE 6 .  Streamlines of a centred shear flow (U = aye,) past a circular cylinder of 
radius b .  There exist two 'backflow' regions, which are bounded by separation streamlines 
intersecting the cylinder a t  angular positions of f 30' as shown. These separation positions 
are independent of the shear rate of the primary flow. 

since the moment on the cylinder when rotating at angular velocity Q, in a 
viscous fluid otherwise a t  rest is M, = 4n,uQ, b2ez and we must have M +M, = 0 
for a freely rotating cylinder. 

It is essential to note that the present solution exists primarily owing to the 
particular feature that no Stokeslet is involved in the solution. This feature is 
violated, for instance, when U(z) is off-centre, so that U + 0 along the streamline 
passing through the centre of the cylinder. 

11. Two-dimensional extensional flow past a circular cylinder 
As another example of possible two-dimensional Stokes flows we consider an 

extensional flow U = Q(ye, - ze,) past a circular cylinder of radius b centred a t  
the origin. Construction of the solution is analogous to the three-dimensional 
case already discussed in 5 8. It is easily verified that the required solution is 

with A = 2Qb2, B = $Qb4. (73 b )  
Here +A is the strength of the two original stresslets and +B that of the two 
original potential quadrupoles, before they are combined to yield the above 
simplified expression. The two-dimensional stream function @(y, z )  of the flow 
is given by 

L y z ( l - ; ) z ,  Qb2 (73 c)  

the corresponding streamlines being shown in figure 4 together with the sphere 
case for comparison. 
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12. Flow between two confocal prolate spheroids in axial rotation 
The singularity method can be further extended to consider interior flow 

problems by admitting also the fundamental solutions for interior flows, such as 
rotons, Stokesons, and so forth. 

As the first example of this category we consider the flow between two confocal 
prolate spheroids 

with a common focal length 2c and eccentricities el and e2, 

x2/a: +r2/b: = 1 (i = 1 ,2 ,  ai B bi, a2 > a,) 

c2 = a: - bt = a; - h i ,  

(74a) 

( 7 4 b )  

Q, = filex, Q, = Q2e,, (75) 

(76) 

c = elal = e2a2 (el > e2) ,  

which are kept rotat,ing about their major axes with angular velocities 

respectively. The no-slip condition now requires that 

u = Qi x x (x on Si, i = 1 ,2 ) ,  

where S,  and S,  designate the inner and outer body surfaces. 
We find that the velocity has the following representation: 

u = a,e,xx+iB,SE - C  (c2-~)u~(x-g;e , )dt .  (77) 

The roton, of undetermined strength ao, is required since the interior flow must 
reduce to a solid-body rotation when the inner spheroid vanishes. The line distri- 
bution of rotlets, with a parabolic density between the two foci, is retained from 
the single-spheroid case (see part I) ,  to which the present solution must reduce 
as the outer spheroid recedes to infinity. Now, on S, and S,, (77) becomes 

ui = [a0+,klof(ei)] (e, x x) (x on Si, i = 1, e), (78 a) 

where 
l + e  

f ( e )  =--log---. 
1 -e2 1-e  

2e 

Hence the no-slip conditions (76) are satisfied if 

fil - Q, 

f1-fi ’ - f1-f2 0 - -  
Q 2 f 1 -  QlfZ a. = 

The moment acting on the inner spheroid, according to (9), is 

which is equal and opposite to the moment on the outer spheroid since there 
exists no other extraneous moment. 

We note here that the rotlet strength, and hence also the moment M, will 
vanish either when fil = Q2 or when the inner spheroid shrinks to a line 
(bl+ 0, el+ l), for in either case the flow is reduced to a solid-body rotation. 
When the outer spheroid recedes to infinity (az +co, e2 +- 0) ,  the present solution 
reduces to the single-spheroid case already treated in part 1. 
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In the limiting case of two concentric spheres (e ,+O and e,+O for fixed a, 
and a,), (78) reduces to the known solution (e.g. Landau & Lifshitz 1959, p. 69), 
while ( S O U )  becomes 

(Sob)  M = - smp( Q, - Q2) (a,, - ex. 

13. Flow between two concentric spheres in relative translation 
As another example of interior Stokes flow we consider the relative translation 

of two spheres a t  the instant when the two centres coincide. Under the Stokes 
approximation, we may choose, with no loss of generality, the inner sphere to be 
fixed while the outer moves with velocity U = U e ,  (which may be regarded as the 
relative velocity when both spheres are in translation). The no-slip condition 
then requires that 

u = 0 ( R  = al),  u = Ue,  (R  = a,), (81) 

a, and a2 being the radii of the two spheres (a, < a,). 

doublet and a Stokeson and is of the form 
The velocity is found to consist of a uniform flow, a Stokeslet, a potential 

-B3(2R2e,-xx), (82a) 

the corresponding pressure being 

1, = - 2 p ~ , 4 ~ 3 -  I O ~ B , ~ ,  (82  b )  

in which the last term represents the prevalent Stokeson pressure. In  fact, the 
above expression for u satisfies the no-slip conditions (81), and hence is the 
solution sought, if, as can be readily verified, 

U, = U r ( 1  +%h3-2h5), B, = $Ua,V(l -A5) ,  (83 a )  

B, = tua!r(i - ~ 3 ) ,  B, = 2ua,2a~3(1 -A,), ( 8 3 b )  

where ~ = a , / a ,  ( <  I), V-1= ( 1 - ~ ) 4 ( 1 + ; ~ + ~ 2 ) .  (83c) 

This solution has been obtained previously (for the references see Happel & 
Brenner 1965, p. 130) by the stream-function method. The drag on the inner 
sphere is simply 

which is of course equal and opposite to the force on the outer sphere according 
to the principle of action and reaction. As shown in figure 7 ,  the drag recovers 
the single-sphere value as A+ 0, and increases rapidly as h = a1/a2+ 1 like 

F = SnpB, e, = 6np Ua, a( 1 - A5) e,, (84a) 

P/67~pUa, = ~ ( 1 - h ) - 3 [ 1 - ( 1 - h ) + 0 ( 1 - h ) 2 ] .  (84 b )  

Although the present solution applies only to the instant when the two spheres 
become concentric, it nevertheless provides a valuable guideline as to the import- 
ance of wall effects and provides an estimate of results for particle interactions 
in rheology. It can further be applied to the problem of small oscillations of two 
concentric spheres. 
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FIGURE 7. Variations of the forces on two concentric cylinders (of radii b, and b,) and two 
concentric spheres (of radii a, and uz) wus. their radius ratio A (h  = b,/b, = u1/u2). 

14. Flow between two concentric cylinders in relative translation 
Regarding still another aspect of the Stokes paradox, we observe that the 

solution for two-dimensional Stokes flow involving a translating cylinder may 
exist if the flow is bounded in all transverse directions. The simplest problem in 
this category is the relative translation of two concentric cylinders. In  complete 
analogy with the concentric-spheres problem, we let the inner cylinder (r = b,, 
r2 = y2+z2) be fixed while the outer cylinder (r = b2) moves with velocity 
U = Ue,. The velocity and pressure can be written as 

+c2( -$+y) -C,(3r2e,-2yx), (85a)  

P = - 2uC1y/r2 - 8UC,Y, (85 b)  

in which the fundamental singularities, as well as x, all assume their two- 
dimensional forms in the y ,  z plane. The no-slip boundary conditions (u = 0 at 
r = b,, u = Ue, a t  r = b2) are satisfied if 

U2 = & U a ( l +  3A2), C, = U a ( l  +A2) ,  ( 8 6 4  

C2 = &Uab2,, C, = 2jUgbT2A2, (86 b )  
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where 

The stream function of the flow can be deduced from (85a) as 

h = b,/b2, g-’ = (1 + h2) log ( l / h )  - (1 - h2).  (86 c )  

+ 1 + 3 ~ 2 + k ) ’ - ( k ) ~ h 2 ] .  ( 8 6 d )  

The force on the inner cylinder, by ( Z O ) ,  is 

F = 47T,Uc, eu = 47r,~dJv( I + h2) eu. (87 a)  

As shown in figure 7 ,  the drag increases drastically as h = b,/b2 approaches 
unity, like 

F/~T,uU = 3(1 [I -#(I - A )  + 0 ( 1  (87 b )  

Of particular interest is the limiting case when the outer cylinder is very large 
compared with the inner one ( A  = bJb2 < I) ,  in which case the drag becomes 

47Tp u 2h2 
log ( l / h )  - I [ -log ( l / h )  - 1 + 0 ($31 * F =  

This result seems to suggest that F would diminish logarithmically as b,/b,+m. 
It should be emphasized, however, that the present solution based on the Stokes- 
flow approximation can be valid only when Ub,/v < 1 as well as UbJv < 1.  

15. Conclusions 
We have presented here the exact solutions to a number of exterior and interior 

Stokes-flow problems involving prolate spheroids, spheres and circular cylinders 
and a variety of primary flows. Although some of these solutions were known, as 
cited in the text in specific cases, their representations in terms of distributed 
singularities are believed to be new. They further demonstrate the effectiveness 
of the method and begin to provide a physical picture of various singularities 
pertaining to body geometries and flows. This physical feeling has led us to 
construct simply new solutions to a few more challenging problems here. 

A primary objective of the present study is to throw light on further develop- 
ment of the singularity method for bodies of arbitrary shape, which may depend 
on the time as in micro-organism locomotion, and for arbitrary primary flows, 
which may appear under various circumstances. It is in this respect useful to 
expound upon the mathematical technique for ascertaining ‘suitable singu- 
larities’ as well as their distributions. For this purpose we summarize in table 1 
the salient features of the singularities and the physical roles they play in the 
exact solutions for a prolate spheroid immersed in different primary flows. (In 
table 1, U denotes the primary-flow velocity, Go its vorticity, ei (i = 1, 2, 3) the 
base vectors along the spheroid’s principal axes, el coinciding with the longi- 
tudinal axis of revolution, eijk is the alternating tensor and ai, pi and yi are 
constants.) 

In  general, these exact solutions seem to suggest the following rules fnr other 
axisymmetric bodies in arbitrary flows. 
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All a t  
centre I of sphere 

Stokeslet - U s k  el) 
+doublet UD(X, el) 
+Stokes quadrupole a2Us(x, e,)/az: 
+ octupole - a2Uo(x, e,)/az; 

TABLE 1 

Paraboloidal flow 

U = (si+zi)e, 
Go = 2(W%--z,e,) 

bas t  a sphere) 

(i) A Stokeslet is required when the primary-flow velocity has a non-zero 
average over the body surface. 

(ii) A rotlet is required when the primary-flow vorticity has a non-zero average 
over the body surface. 

(iii) A stresslet may be required when the primary flow has a velocity gradient 
with a non-zero average over the body surface. (A stresslet Us, associated with 
e, and ei is suggested for each non-zero surface average of aU$xj.) 

(iv) A doublet is associated, as a rule, with a Stokeslet, a potential quadrupole 
with a stresslet, and likewise for higher-order poles, such that in each case the 
congruent pair have the same dependence on the base vectors e,, ej and e,. 

(v) For interior Stokes flows, a Stokeson is generally associated with a 
Stokeslet, a roton with a rotlet, and a stresson with a stresslet. 

These rules should be regarded, a t  this stage, merely as a useful guideline. 
A precise statement of the necessary and sufficient conditions for their validity, 
and hence the converse to these rules, will require a mathematical proof, which 
is under investigation. 

With suitable singularities ascertained for an arbitrary (axisymmetric) body 
in a certain designated flow, the problem becomes one of determining the 
singularity distribution, both in magnitude and spatial range, from a set of three 
coupled functional equations of the first kind as a result of the no-slip boundary 
condition on the velocity components a t  the body surface. Since the distribution 
range is unknown a priori, these integral equations are nonlinear equations, 
about which little theoretical information is available (except for the special case 
of slender bodies). This general problem will be discussed in a future study. 
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